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a b s t r a c t

A new high-order finite-volume method is presented that preserves the skew symmetry of
convection for the compressible flow equations. The method is intended for Large-Eddy
Simulations (LES) of compressible turbulent flows, in particular in the context of hybrid
RANS–LES computations. The method is fourth-order accurate and has low numerical dis-
sipation and dispersion. Due to the finite-volume approach, mass, momentum, and total
energy are locally conserved. Furthermore, the skew-symmetry preservation implies that
kinetic energy, sound-velocity, and internal energy are all locally conserved by convection
as well. The method is unique in that all these properties hold on non-uniform, curvilinear,
structured grids. Due to the conservation of kinetic energy, there is no spurious production
or dissipation of kinetic energy stemming from the discretization of convection. This
enhances the numerical stability and reduces the possible interference of numerical errors
with the subgrid-scale model. By minimizing the numerical dispersion, the numerical
errors are reduced by an order of magnitude compared to a standard fourth-order finite-
volume method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The last decade has seen the advance of hybrid computational methods for turbulent flows that combine Large-Eddy
Simulations (LES) in separated flow regions with the solution of the Reynolds-Averaged Navier–Stokes (RANS) equations
for the attached boundary layers and other near-wall regions. This development was started by Spalart et al. [1] with the
presentation of the Detached Eddy Simulation approach. Commonly, these hybrid RANS–LES methods are introduced in
existing CFD solvers that are based on second-order finite-volume methods, in particular for compressible flows. It can be
argued, however, that second-order accuracy is not sufficient for LES [2–4]. Numerical errors introduced by the discretization
of the convection terms can be of the same order of magnitude as the subgrid-scale (SGS) stresses [3], in particular if a filter
width equal to the mesh width is used. In that case, the computational results are determined as much by the numerical
errors as by the SGS model. Although in some cases, these numerical errors and SGS modelling errors may partly cancel
[5], thus improving the total accuracy of the computational result, this is not something that can be relied on in general.
The possibly strong effect of the numerical errors on the results should somehow be taken into account. This paper aims
. All rights reserved.
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at minimizing the interference of numerical errors with the SGS model. Thus, an opposite approach is followed compared to
methods like MILES [6], in which one relies on the numerical dissipation to do the work of an SGS model.

A new high-order cell-centred finite-volume method for the compressible flow equations is presented that has the follow-
ing key properties; it is the combination of these key properties that makes the method unique:

� Mass, momentum, and total energy are locally conserved.
� Kinetic energy, sound-velocity, and internal energy are locally conserved by convection.
� The inviscid terms are discretized with fourth-order accuracy in space.
� The method has low numerical dispersion.
� The method has no numerical dissipation (unless explicitly added).
� The first five properties are all maintained on smooth, non-uniform, curvilinear grids.

The grid is required to be smooth only for formal fourth-order accuracy (where a grid is considered smooth if it is the
image of a uniform grid in computational space by a continuously differentiable mapping). The conservation properties,
however, are independent of the grid smoothness.

These key properties are important for reducing the interference of numerical errors with the SGS model. In particular,
local conservation of kinetic energy by convection implies that the discretized convection terms do not introduce spurious
production or dissipation of kinetic energy, so that kinetic energy is only dissipated by the SGS (or viscous) stresses. Further-
more, minimizing numerical dispersion is equivalent to minimizing the implicit filter introduced by discretizing the convec-
tion terms, as will be shown below.

In this paper, the new high-order finite-volume method is derived in detail. Its basic ideas have been presented before [7].
Results are presented here for two basic test cases that will demonstrate the key properties of the method: the convection of
an isentropic vortex and decaying isotropic homogeneous turbulence. The method already has been applied successfully to
hybrid RANS–LES computations using the eXtra-Large Eddy Simulation (X-LES) method [8]. In particular, the improvement of
the numerical accuracy over a standard second-order method has been shown for the turbulent flow over a rounded bump in
a square duct [9].

1.1. Local conservation and high-order schemes

The Navier–Stokes equations are based on the conservation laws for mass, momentum, and total energy. Furthermore, the
convection process by itself conserves both kinetic and internal energy (whereas pressure work and viscous dissipation
cause an exchange of these energies). Numerical methods can preserve conservation in two ways: globally, if the total
amount of a quantity in the flow domain is conserved, and locally, if it is based on a discrete divergence form with unique
fluxes between adjacent grid cells. Local conservation is sufficient but not necessary for global conservation.

Numerical methods that preserve the global conservation of momentum and kinetic energy by convection for incompress-
ible flow are common in the literature. Global conservation of kinetic energy ensures numerical stability because the total
kinetic energy is an energy norm that cannot increase (but only decrease due to viscous dissipation). Thus, no numerical dis-
sipation is needed to stabilize the method, which would otherwise reduce the numerical accuracy (and could interfere with
the SGS model). As discussed by Kravchenko and Moin [3], such methods are based on the so-called skew-symmetric form of
convection, which is defined as the average of the divergence and advective forms. Global conservation can then be derived if
the discretization scheme satisfies a summation-by-parts rule (i.e., allows integration by parts in a discrete sense), which is
the case for central differences and spectral methods, at least on uniform Cartesian grids [10]. Additionally, the skew-sym-
metric form reduces the aliasing errors compared to the divergence and advective forms [11,3]. Generally, however, these
schemes do not conserve momentum (or kinetic energy) locally. This would require the discretized skew-symmetric form
to be equivalent to a discrete divergence form. This depends on the discretization scheme satisfying a discrete product rule
of differentiation, which is not the case for standard finite differences (and for spectral schemes only if de-aliased).

The staggered second-order finite-difference method of Harlow and Welch [12] does conserve both momentum and kinetic
energy locally for incompressible flow (full conservation). It is based on a discrete divergence form of convection that can be
shown to be equivalent to the skew-symmetric form by using a special product rule [13]. Morinishi et al. [13] have extended
this method to fourth-order accuracy for both regular and staggered approaches on uniform grids. They also consider non-uni-
form grids, but state that one must choose between strict conservation or strict fourth-order accuracy. Vasilyev [14] has im-
proved the method of Morinishi et al. for non-uniform grids, combining the fourth-order accuracy with the conservation of
either momentum or kinetic energy, but not both. The staggered method of Verstappen and Veldman [15–17], on the other
hand, maintains both fourth-order accuracy and full conservation on non-uniform Cartesian grids. The essential point is that
they use Richardson extrapolation to derive the high-order scheme and that they do not change the coefficients of the stencil
when applying the scheme to non-uniform grids. This means that the equations are discretized in computational space rather
than physical space and that a smooth mapping between the two spaces is assumed (where the smooth mapping is only nec-
essary for strict fourth-order accuracy and not for strict conservation). Attempts to minimize the local truncation errors in
physical space on non-uniform grids by modifying the coefficients of the scheme will lead to loss of conservation of kinetic
energy. It can even have a strongly adverse effect on the global discretization error [18,19]. Thus far, no one has presented
an extension of these methods to curvilinear grids while maintaining both accuracy and conservation.
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For compressible flow, a skew-symmetric form has been defined by Feiereisen et al. [20] that also leads to global conser-
vation of momentum and kinetic energy by convection for standard central finite-difference and spectral methods, in the
same manner as for incompressible flow. Formally, numerical stability is not ensured, however, since compression or expan-
sion of the fluid results in an isentropic exchange of kinetic and internal energy (through work done by the pressure), allow-
ing for an increase (as well as decrease) of total kinetic energy. Nevertheless, spurious production or dissipation of kinetic
energy due to discretization of the convective terms is avoided. Based on the skew-symmetric form of Feiereisen et al.
[20], Honein and Moin [21] have developed a sixth-order compact finite-difference scheme that locally conserves mass
and globally conserves momentum and kinetic energy (by convection) as well as entropy and its square. Their method is
stable without any artificial dissipation or filtering for the computation of decaying isotropic homogeneous turbulence at
high Reynolds numbers. Momentum and total energy, however, are not locally conserved. Furthermore, non-uniform or cur-
vilinear grids are not considered.

Local conservation of mass, momentum, and total energy is an essential property of numerical methods for compressible
flows if one wants to capture weak solutions accurately. In other words, there must be a unique flux between two (adjacent)
grid cells, sometimes also called the telescopic property. Ducros et al. [22] have developed high-order finite-difference and
finite-volume methods that have this property and that are equivalent to a discrete skew-symmetric or skew-symmetric-like
form, respectively (based on a discrete product rule). They do not try to conserve kinetic energy, however, but use the skew-
symmetric(-like) forms because they reduce aliasing errors. Possibly, their finite-difference method locally conserves kinetic
energy (although they do not show this and it is also not clear whether they use the form of Feiereisen), but their finite-vol-
ume method certainly does not. On non-uniform grids, they only consider the finite-volume method (as they could not ob-
tain a conservative finite-difference method in that case). They extend the stencil of the fluxes only in one direction,
however, so that the method is formally not fourth-order accurate in multiple dimensions. Furthermore, the truncation error
in physical space is minimized by a mesh-size dependent interpolation that would also lead to the loss of kinetic-energy con-
servation (if it had been the case on a uniform grid in the first place). Others have used skew-symmetric forms for compress-
ible flows also with the aim of reduced aliasing errors rather than conserving kinetic energy [23–26].

In deriving the present high-order finite-volume method, the following two essential points will be shown:

(1) Discrete local conservation of both momentum and kinetic energy by convection (full conservation) is possible for
compressible flow, even on non-uniform curvilinear grids.

(2) Strict fourth-order accuracy can be obtained on non-uniform curvilinear grids without sacrificing full conservation.

For the first point, an alternative definition of the compressible skew-symmetric form of convection is given that is in-line
with the incompressible definition. A discrete product rule is derived for finite-volume methods on curvilinear grids. Using
this product rule, the discrete skew-symmetric form is shown to be equivalent to a discrete divergence form. This discrete
form is used in the momentum equation and in the sound-velocity equation. Thus, mass, momentum, total energy, kinetic
energy, sound-velocity, and internal energy are all locally conserved by convection. For the second point, the Richardson
extrapolation approach of Verstappen and Veldman [17] is extended from staggered, Cartesian grids to cell-centred, curvi-
linear grids. Although this approach combines multiple control volumes, it will be shown that the method can be written in a
form with unique fluxes between adjacent grid cells (telescopic property).

1.2. Numerical dissipation and dispersion

The aim of the high-order finite-volume method is to minimize the interference of numerical errors, stemming from the
inviscid terms, with the SGS model. The SGS stresses are essentially responsible for dissipating the turbulent structures at
small wave lengths close to the filter width. Reducing the interference of numerical errors with the SGS model therefore re-
quires a numerical method with low numerical dispersion and dissipation at large wave numbers. Using a central stencil
ensures that the scheme has no numerical dissipation for linear terms; for the non-linear convection term, numerical dissi-
pation of kinetic energy is prevented by using the skew-symmetric form, as discussed above.

The numerical dispersion at large wave numbers can be minimized by using appropriate central finite-differencing
schemes such as, in particular, the dispersion-relation preserving (DRP) scheme of Tam and Webb [27] and the compact
schemes of Lele [28]. Tam and Webb create the freedom to minimize the dispersion by using a larger stencil than necessary
to obtain fourth-order accuracy (seven instead of five points). Lele uses implicit differences to increase the order of accuracy
and lower the dispersion without increasing the stencil of the scheme (but at the expense of solving an implicit system in
each direction). Compact finite-difference schemes have been used frequently for LES [21,24,29]; this does not seem to be
the case for the DRP scheme.

Compact finite-difference schemes have been extended to non-uniform, curvilinear grids [30,31]. To maintain (local) con-
servation of mass, momentum, and total energy on such grids, the finite-differencing must be applied to the equations written
in strong conservation form in curvilinear coordinates. Visbal and Gaitonde [31,29] have done this successfully for a high-or-
der compact scheme. Their scheme does not conserve kinetic energy, however, and it requires filtering to damp numerical
instabilities introduced by grid non-uniformity, boundary conditions, and the non-linear terms. Similarly, compact schemes
have been developed for finite-volume methods [32–36], again ensuring local conservation of mass, momentum, and total
energy, but not of kinetic energy. These methods also typically require filtering to maintain numerical stability.
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The DRP approach of Tam and Webb has been applied to finite-volume methods in the context of computational aero-
acoustics. Nance et al. [37] did this by extending the stencil of the fluxes in one direction. This means that the fourth-order
accuracy is lost on non-uniform grids in multiple dimensions. Furthermore, an upwind instead of a central stencil is used,
introducing numerical dissipation. Popescu et al. [35] also apply the DRP approach to a finite-volume method such that
the finite-volume method is equivalent to the DRP scheme on a uniform Cartesian grid. It has the same limitation as the
method of Nance in multiple dimensions.

In the finite-volume method presented here, the DRP approach is applied to reduce the numerical dispersion. The
freedom to minimize the dispersion is obtained by using a larger stencil in the Richardson extrapolation rather than using
a larger stencil in the fluxes. On a uniform Cartesian grid, the method is essentially equivalent to the DRP scheme. For non-
uniform, curvilinear grids, the following (third) essential point will be shown:

(3) Low dispersion (in the DRP sense) can be obtained on non-uniform curvilinear grids while maintaining full local con-
servation and high-order accuracy.

2. Symmetry and conservation for compressible flow

2.1. The skew-symmetric form of the convective operator

In Section 3, a high-order finite-volume method for the compressible flow equations will be presented that preserves not
only the local conservation of mass, momentum, and total energy, but also the local conservation by convection of kinetic
energy, sound-velocity, and internal energy. For this purpose, the skew-symmetric form of the convective operator is defined
in this section. In particular, a definition is given for compressible flow that is in-line with the incompressible definition. This
form is essential in deriving the high-order finite-volume method with the desired conservation properties.

Convection of a physical quantity, like mass, momentum, and energy, can be described by several forms of the convective
operator. The divergence form of the operator, expressing conservation, is given by
D/ � @q/
@t
þr � ðqu/Þ ð¼ 0Þ; ð1Þ
with /(t,x) the convected physical quantity per unit mass, q the density and u the fluid velocity (and where D/ = 0 holds if /
is only convected). The advective form,
A/ � q
@/
@t
þ qu � r/ ð¼ 0Þ; ð2Þ
gives the time derivative of / while moving along with a fluid particle (multiplied by density). The two forms are easily
shown to be analytically equivalent using the continuity equation for a compressible flow,
@q
@t
þr � ðquÞ ¼ 0; ð3Þ
which expresses mass conservation (and is obtained by setting / = 1 in D/ = 0).
Convection of a physical quantity implies conservation not only of the quantity itself, but also of its quadratic form (/2),

since
D
1
2

/2
� �

¼ 1
2

/D/þ 1
2

/A/ ¼ /K/ ð¼ 0Þ; ð4Þ
where, in-line with the incompressible definition, the skew-symmetric form of the convective operator is defined as
K ¼ 1

2 ðDþ AÞ. Thus, conservation of the quadratic form (D 1
2 /2� �

¼ 0) follows immediately if the skew-symmetric form is used
to express convection (K/ = 0). If the divergence form (D/ = 0) or the advective form (A/ = 0) is used, then also the continuity
equation is needed to derive the conservation of the quadratic form. The fact that K is a skew-symmetric operator follows
from the more general relation
Dð/hÞ ¼ /Dhþ hA/ ¼ /Khþ hK/; ð5Þ

which also shows that D and �A are adjoint operators [38]. Besides the skew-symmetric form also a symmetric operator is
defined naturally as S ¼ 1

2 D� Að Þ, so that D = K + S and A = K � S. Substituting the definitions of D and A, the skew-symmetric
and symmetric operators are found to be
K/ � 1
2
@q/
@t
þ 1

2
q
@/
@t
þ 1

2
r � ðqu/Þ þ 1

2
qu � r/; ð6aÞ

S/ � 1
2

@q
@t
þr � ðquÞ

� �
/: ð6bÞ
Note that it follows from the continuity equation that the symmetric operator S is identical to zero, and that therefore the
divergence form D, the advective form A, and the skew-symmetric form K of the convective operator are all equivalent.
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The present definition of the skew-symmetric form, Eq. (6a), is suitable for deriving a finite-volume method with the de-
sired local conservation properties. The skew-symmetric form introduced by Feiereisen et al. [20], given by
KF/ �
@q/
@t
þ 1

2
r � ðqu/Þ þ 1

2
qu � r/þ 1

2
/r � ðquÞ; ð7Þ
has been used for deriving finite-difference and spectral methods with global kinetic-energy conservation [20,21]. The dif-
ference between the skew-symmetric form of Feiereisen KF and the present definition K is the symmetric operator S, i.e.,
KF = K + S.

Note that in both definitions of the skew-symmetric form, the density q goes together with the velocity u and not with /.
Sometimes the reverse is done [24,39]. It is essential, however, to keep the density with the velocity in order to obtain dis-
crete kinetic-energy conservation, as will be seen below, and as was also pointed out by Honein and Moin [21]. This may
seem counter-intuitive, as one could think that q/ is the conserved quantity that is convected by the velocity u. Convection,
however, conserves the physical quantities of a fluid particle. As a fluid particle has a constant mass, and not a constant vol-
ume, the quantities per unit mass are conserved (/) and not the quantities per unit volume (q/).

2.2. The compressible flow equations

Now, the compressible flow equations can be written using the skew-symmetric form. Only the convective terms need to
be considered. Therefore, we may limit ourselves to the compressible Euler equations. The equations for momentum and
sound-velocity are given by
Duþrp ¼ 0 or Kuþrp ¼ 0; ð8aÞ

Dc þ c� 1
2

qcr � u ¼ 0 or Kc þ c� 1
2

qcr � u ¼ 0; ð8bÞ
using either the divergence or skew-symmetric form, with p the pressure, c the sound-velocity, and c the ratio of specific
heats. Both analytic formulations will ultimately result in the same discrete formulation, as will be shown below. The kinetic
energy is the quadratic form of the velocity vector, Ek ¼ 1

2 u � u, while the internal energy e can be interpreted as the quadratic
form of the sound-velocity, since for a perfect gas c2 = cp/q = c(c � 1)e. Equations for the kinetic and internal energy with
convection in divergence form are obtained directly from the momentum and sound-velocity equations using the skew-sym-
metric form. Multiplying Eqs. (8a) and (8b) by u and c, respectively, and using Eq. (4), leads to
DEk þr � ðpuÞ ¼ pr � u; ð9aÞ

De ¼ �pr � u: ð9bÞ
Thus, due to the skew symmetry of the convection operator in the momentum and sound-velocity equations, the left-hand
sides of Eq. (9) obtain a divergence form, hence kinetic and internal energy are conserved by convection. The term on the
right-hand sides of Eq. (9) represents the work done by the pressure as a consequence of compression or expansion of
the fluid, leading to an (isentropic) exchange of kinetic and internal energy. Adding the equations for kinetic and internal
energy shows that the total energy E = e + Ek is conserved,
DEþr � ðpuÞ ¼ 0: ð10Þ
For a numerical method that preserves the skew symmetry of convection in a discrete sense, the total energy will be glob-
ally conserved. In other words, the integral of total energy over the flow domain D, given by
Z

D
qE dV ¼

Z
D
q

1
2

u � uþ c2

cðc� 1Þ

� �
dV ; ð11Þ
is conserved. For incompressible flows, the density is constant and therefore this integral is an energy norm of the velocity
fields that cannot increase, proving the stability of such a symmetry-preserving method. For compressible flow, however,
this integral is not strictly an energy norm and unbounded growth of the velocity fields is not excluded, because the density
may approach zero. Nevertheless, the results below will show that such a symmetry-preserving method enhances the
numerical stability for compressible flows. Additionally, in such a numerical method kinetic energy is locally conserved
by convection, so that there is no spurious production or dissipation of kinetic energy stemming from the discretized con-
vective operator, which could otherwise pollute the physical dissipation due to viscosity and the subgrid-scale model.
3. High-order finite-volume scheme

3.1. Conservative discretization preserving skew symmetry

A high-order finite-volume method for the compressible flow equations will be developed that preserves the local con-
servation by convection of momentum, kinetic energy, sound-velocity, and internal energy. The local conservation of
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momentum, as well as mass and total energy, is simply ensured by applying a finite-volume discretization to the flow equa-
tions in divergence form. On the other hand, local conservation of kinetic and internal energy by convection is ensured if the
skew symmetry of convection is preserved. This requires that the skew-symmetric form, rather than the divergence form, is
used in the momentum and sound-velocity equations. Furthermore, the skew-symmetric form must be discretized such that
Eq. (4) also holds in a discrete sense, where the left-hand side of this equation should be a finite-volume discretization of the
divergence form. Finally, the two discretizations, one based on the divergence form and the other based on the skew-sym-
metric form, should be shown to be exactly equivalent, which involves the discretized continuity equation and a discrete
product rule of differentiation, as will be shown below.

Starting point for deriving a high-order finite-volume scheme is a standard second-order scheme. Let the flow domain be
discretized by a smooth, single-block, structured grid. A structured grid in 3D consists of an ordered set of hexahedral cells
Xi, numbered by the triple index i = (i, j,k).

Essentially, a cell-centred, finite-volume discretization of the gradient operator rF is obtained by integrating the gradi-
ent over the grid cell Xi and applying Gauss’ divergence theorem. This leads to
riF ¼
1
V i

X
f

F f Af ; ð12Þ
with Vi the volume of the grid cell, F f the flux at cell face f, and Af the area vector of cell face f. The summation takes place
over all faces f of the considered grid cell. Local conservation requires that the fluxes at the cell faces are unique. Uniform-
flow consistency requires that the area vectors satisfy the geometric conservation law
X

f

Af ¼ 0: ð13Þ
The cell volume and the area vectors, satisfying the geometric conservation law, are computed from the cell-vertex coordi-
nates by defining the edges of the grid cell as straight lines and by representing the cell by a trilinear interpolation function.

For a second-order central scheme, the fluxes are obtained by averaging the variables from the adjacent cells. When a flux
consists of the product of several variables, one has to choose which variables are averaged. For this purpose, define the fol-
lowing averages
�uf ¼
1
2
ðui;j;k þ uiþ1;j;kÞ; ð14aÞ

fuv f ¼
1
2
ðui;j;kv iþ1;j;k þ uiþ1;j;kv i;j;kÞ; ð14bÞ
where, without loss of generality, the face f between cells Xi,j,k and Xi+1,j,k is considered. Using the geometric conservation
law (Eq. (13)), the following rules can be derived for the averages and for the discrete gradient operator (see Appendix A for
details),
gðuvÞv f ¼ �uf fvv f ; ð15aÞ

ri�u�v ¼ 1
2
riuv þ 1

2
rifuv ; ð15bÞ

rifuv ¼ uiri �v þ v iri�u; ð15cÞ
where, for example, ri�u�v means that at each cell face f the flux is computed as F f ¼ �uf �v f and where the variables between
brackets (uv) are averaged as one. The third rule is a discrete equivalent of the product rule of differentiation, which is essen-
tial in maintaining full conservation.

Eqs. (14) and (15) can be seen as an extension of the definitions and rules of Morinishi et al. [13] for finite-differencing
methods on uniform grids to finite-volume methods on non-uniform grids. Considering non-uniform grids, Morinishi states
that one needs to include the mesh size in the differencing and averaging operators such as Eq. (14) in order to maintain the
numerical accuracy (in particular for high-order schemes). As a consequence, however, the discrete product rule no longer
holds and full conservation cannot be maintained. Here, the discrete product rule does hold, because the grid metrics are not
included in Eq. (14), but the averaging weights are kept constant (equal to 1

2), following Verstappen and Veldman [17]. The
metrics of non-uniform grids are only included through the cell volumes and area vectors in Eq. (12). How high-order accu-
racy can be obtained despite the grid-independent averaging weights will be shown in Section 3.3.

Local conservation is preserved if a finite-volume discretization of the divergence form D (Eq. (1)) is used, as given by
Di/ �
dqi/i

dt
þri � F; ð16Þ
with the discrete flux vector F equal to qu/ obtained by some average of the variables from the adjacent cells. The discret-
ization is locally conservative in the sense that there is a unique flux vector F at the face between two cells (telescopic prop-
erty). The precise definition of the flux vector F is still open.



J.C. Kok / Journal of Computational Physics 228 (2009) 6811–6832 6817
In order to preserve the skew symmetry (i.e., the local conservation by convection of the quadratic form /2), discretize the
skew-symmetric form K (Eq. (6a)) as
K i/ �
1
2

dqi/i

dt
þ 1

2
qi

d/i

dt
þ 1

2
ri � qu/þ 1

2
qiui � ri

�/: ð17Þ
Because the averaging weights in Eq. (14) have been chosen independent of the grid metrics and therefore the discrete prod-
uct rule of differentiation (Eq. (15c)) holds, it follows that
/iK i/ ¼
1
2

/i
dqi/i

dt
þ qi/i

d/i

dt

� �
þ 1

2
/iri � qu/þ qiui/i � ri

�/
� �

¼ d
dt

qi
1
2

/2
i

� �
þ 1

2
ri � g/ qu/ð Þ

¼ d
dt

qi
1
2

/2
i

� �
þri � qu

1
2
f//

� �
: ð18Þ
using also relation (15a) in the last step. Thus, Eq. (4) is preserved in a discrete sense, where the last line of Eq. (18) is a finite-
volume discretization of the divergence form applied to /2, ensuring local conservation of /2.

Apparently, we now have two different discretizations of convection, one based on the divergence form (Eq. (16)), with
local conservation of /, and one based on the skew-symmetric form (Eq. (17)), with local conservation of /2. For a particular
definition of the flux vector F, however, the two forms are exactly equivalent, ensuring conservation of both / and /2.
Remember that the analytic divergence form D and skew-symmetric form K are related to each other by D = K + S with S
the symmetric form (Eq. (6b)). Require that the discrete divergence form Di satisfies the relation Di = Ki + Si with the symmet-
ric operator S, i.e., the continuity equation, discretized as
Si/ �
1
2

dqi

dt
þri � qu

� �
/i: ð19Þ
Using the rules of Eq. (15), one then finds that
Di/ �
dqi/i

dt
þri � qu�/; ð20Þ
which is indeed a finite-volume discretization of the divergence form in the form of Eq. (16). Thus, if the discrete continuity
equation is satisfied (Si � 0), then the discrete divergence and skew-symmetric forms are equivalent. Eq. (20) shows that the
flux vector F should be computed as qu�/. In other words, when computing the averages at the cell faces, q goes together
with u and not with /. This is essential in order to preserve the skew symmetry, as was also remarked at the end of Section
2.1. Note that this scheme differs only slightly from one of the variants of the Jameson scheme [40] in which the flux is com-
puted by averaging the flow variables per unit volume F ¼ quq/=�q. In fact, for incompressible flow, this Jameson-type aver-
aging is equivalent to the skew-symmetric form.

3.2. The compressible flow equations

A second-order finite-volume discretization of the compressible Euler equations, in which momentum, kinetic energy,
sound-velocity, and internal energy are all locally conserved by convection, can now be derived by applying the discrete
skew-symmetric, symmetric, and divergence forms as defined above (Eqs. (17), (19), and (20)). The continuity equation is
discretized as in Eq. (19),
dqi

dt
þri � qu ¼ 0: ð21Þ
This implies that Si � 0, so that the discrete divergence and skew-symmetric forms are equivalent (Di � Ki). The momentum
and sound-velocity equations are discretized using either of these forms as
Diuþri�p � K iuþri�p ¼ 0; ð22aÞ

Dic þ
c� 1

2
qiciri � �u � K ic þ

c� 1
2

qiciri � �u ¼ 0: ð22bÞ
Multiplying these equations with the velocity ui and the sound-velocity ci, respectively, and using Eq. (18) gives the discret-
ized equations for the kinetic and internal energy,
dqiðEkÞi
dt

þri � ðqu ~EkÞ þ ri � fup ¼ piri � �u; ð23aÞ

dqiei

dt
þri � ðqu~eÞ ¼ �piri � �u; ð23bÞ
with ~Ek ¼ 1
2
gu � u and cðc� 1Þ~e ¼ ecc , and with the left-hand sides in conservative form. Finally, adding the discrete equations

for kinetic and internal energy gives the equation for the total energy E in conservative form,
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dqiEi

dt
þri � ðqueEÞ þ ri � fup ¼ 0; ð24Þ
with eE ¼fEk þ ~e.
When solving the semi-discrete equations, one has to choose which equations are integrated in time. For the momentum

equation, one can choose either the divergence or the skew-symmetric form. For the energy equation, one can choose be-
tween the sound-velocity equation (in divergence or skew-symmetric form), the internal-energy equation, or the total-en-
ergy equation. If the time-integration is exact, all these different forms are exactly equivalent. Consistent with standard
finite-volume methods for compressible flow, here the divergence forms of the momentum and total-energy equations
are solved.

An alternative choice for the energy equation is presented by Honein and Moin [21]. They discretize the entropy equation
using the skew-symmetric form, resulting in the conservation of entropy and its square, but at the loss of the conservation of
internal and total energy. Although the present scheme does not conserve the entropy exactly, the results below will show
that the entropy errors are small.

So far, only the spatial discretization has been considered. For the time-integration, one could also require that the skew
symmetry is preserved, i.e., that Eq. (18) also holds with a discretized time derivative. This issue is considered in Appendix B.
No suitable time-integration method has yet been found, however, that exactly maintains skew symmetry and conservation
of kinetic energy for the compressible convection operator. Therefore, standard, accurate time-integration schemes are used.
For the results presented below, either the explicit four-stage Runge–Kutta scheme or the implicit second-order backward
scheme have been employed.

3.3. Basic fourth-order finite-volume scheme

A fourth-order finite-volume scheme on non-uniform curvilinear grids is derived by applying Richardson extrapolation
[17] to the second-order discretization, while preserving the skew symmetry as in the previous sections. Consider again
the second-order, cell-centred scheme for the gradient operator in Rd (with the spatial dimension d = 1,2, or 3), written as
Vh
irh

i F ¼ Bh
i ; ð25Þ
with the flux balance Bh
i given by
Bh
i ¼ Fh

iþ1=2;j;k � Fh
i�1=2;j;k þ Fh

i;jþ1=2;k � Fh
i;j�1=2;k þ Fh

i;j;kþ1=2 � Fh
i;j;k�1=2; ð26Þ
and with Fh ¼ F hAh the flux through a cell face. The superscript h indicates the mesh size in the computational domain.
The idea of Richardson extrapolation is to increase the order of accuracy by cancelling the leading-order errors of the dis-

cretization. To determine the leading-order errors, the equations are considered in the computational domain. A smooth,
non-uniform grid can be interpreted as the image of a uniform grid with mesh size h in the computational domain
n 2 [0,1]d by the continuously differentiable mapping x(n) (where, without loss of generality, h is assumed to be the same
in all computational directions). A finite-volume discretization can be interpreted as a discretization of the conservative form
of the gradient operator in the curvilinear coordinate system n,
JrF ¼
Xd

j¼1

@

@nj
F Jrnj

� �
; ð27Þ
with J = det(dx/dn) the determinant of the Jacobian of the transformation x(n). In particular, the cell volume Vh
i =hd can be

interpreted as a discretization of the Jacobian J and the area vectors Ah/hd�1 as discretizations of the metric terms Jrni

(see Fig. 1), and finally the flux balance Bh
i =hd as a discretization of the right-hand side of Eq. (27) (which is also a flux bal-

ance). Because symmetric stencils are employed, the discretization errors contain only terms of even order in h. Hence, Eq.
(25) divided by hd can be interpreted as a second-order approximation to Eq. (27). This can be written as
1

hd
Vh

i ¼ Ji þ Cih
2 þOðh4Þ; ð28aÞ

1

hd
Bh

i ¼
Xd

j¼1

@

@nj
F Jrnj

� � !
i

þ Dih
2 þOðh4Þ; ð28bÞ
with the coefficients C and D both functions of n. These formulas depend on Taylor series up to fifth order of the functions
FðnÞ and x(n) for which it is sufficient that these functions are five times continuously differentiable. Note that on non-uni-
form grids, Vasilyev [14] also discretizes the gradient in computational space, but does not base it on the conservative form
of Eq. (27) and as a consequence is not able to maintain full conservation.

To obtain a fourth-order scheme, the leading-order discretization errors of the second-order scheme should be annihi-
lated. Following Verstappen and Veldman [17], this can be done by applying, at each cell centre, the same discretization sten-
cil on a second, larger control volume and subsequently combining the two discretization stencils through Richardson
extrapolation. Verstappen and Veldman used a staggered scheme, for which a control volume with a three times larger mesh
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size in the computational domain was the smallest control volume allowing the same discretization stencil. For a cell-cen-
tred scheme, a control volume with twice the mesh size could be used, but its vertices would not coincide with grid points, so
that its metrics could not be directly computed from the grid coordinates. Therefore, for the current cell-centred scheme, also
a control volume with a three times larger mesh size in the computational domain is preferred initially.

Define for each cell centre a control volume X3h
i by joining the 3d surrounding grid cells, as illustrated in Fig. 2. This con-

trol volume has a mesh size 3h in the computational domain. The volume V3h and the area vectors A3h of this control volume
are defined in exactly the same manner as for the grid cell itself in terms of the vertices of the control volume X3h

i . The same
discretization stencil is applied to this control volume, which means that the stencil must now have a spacing of three mesh
sizes (see again Fig. 2). This leads to
V3h
i r3h

i F ¼ B3h
i ; ð29Þ
with the flux balance given by
B3h
i ¼ F3h

iþ3=2;j;k � F3h
i�3=2;j;k þ F3h

i;jþ3=2;k � F3h
i;j�3=2;k þ F3h

i;j;kþ3=2 � F3h
i;j;k�3=2: ð30Þ
The flux F3h ¼ F 3hA3h at the face f between control volumes X3h
i;j;k and X3h

iþ3;j;k is computed in exactly the same manner as the
fluxes of the original control volume, averaging the variables located at the centres of the two control volumes. Thus, the
following averages are used:
�u3h
f ¼

1
2

ui;j;k þ uiþ3;j;k
� �

; ð31aÞ

fuv 3h
f ¼

1
2

ui;j;kv iþ3;j;k þ uiþ3;j;kv i;j;k

� �
: ð31bÞ
i
hΩ

i
3hΩ

Fig. 2. Control volumes Xh
i and X3h

i around the same cell centre with corresponding discretization stencils (2D).
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Again the averaging weights (equal to 1
2) are independent of the grid metrics, so that, for this second discrete gradient oper-

ator, the rules of Eq. (15) also apply.
The discretization stencil that is employed to define the cell volume and flux balance on the new control volume is exactly

the same as on the original control volume, but using a three times larger mesh size. Therefore, the discretization errors for
the new control volume are also given by Eq. (28), with the same values of the coefficients C and D for the leading-order
discretization errors, but with the mesh size h replaced with 3h. Thus, the leading-order errors are a factor 32 larger for
the new control volume. Cancelling these leading-order errors through Richardson extrapolation results in a fourth-order
accurate finite-volume discretization of the gradient operator, given by
V�ir�iF ¼ B�i ; ð32Þ
with
V�i ¼
hd

32 � 1
32 1

hd
Vh

i �
1

ð3hÞd
V3h

i

 !
¼ 9

8
Vh

i �
1

8 � 3d
V3h

i ; ð33aÞ

B�i ¼
hd

32 � 1
32 1

hd
Bh

i �
1

ð3hÞd
B3h

i

 !
¼ 9

8
Bh

i �
1

8 � 3d
B3h

i ; ð33bÞ
where superscript * indicates the fourth-order discretization. The fourth-order discrete gradient operator can be written as a
linear combination of the two second-order operators,
r�iF ¼ airh
iF þ bir3h

i F ; ð34Þ
with the coefficients ai ¼ 9
8 Vh

i =V�i and bi ¼ � 1
8 V3h

i =ð3
dV�i Þ. For each grid cell, this scheme has a seven-point stencil in each

computational direction (from i � 3 to i + 3, although cells i � 2 and i + 2 are not used).
To show that the scheme is locally conservative, the flux balance can be written as
B�i ¼ F�iþ1=2;j;k � F�i�1=2;j;k þ F�i;jþ1=2;k � F�i;j�1=2;k þ F�i;j;kþ1=2 � F�i;j;k�1=2; ð35Þ
with the fluxes defined uniquely at each cell face by
F�iþ1=2;j;k ¼
9
8

Fh
iþ1=2;j;k �

1

8 � 3d
F3h

i�1=2;j;k þ F3h
iþ1=2;j;k þ F3h

iþ3=2;j;k

� �
: ð36Þ
A fourth-order discretization of the convective operator is obtained by using the fourth-order discrete gradient operator
r�i , as defined above, in the definitions of the discrete skew-symmetric, symmetric, and divergence forms as given by Eqs.
(17), (19), and (20). A fourth-order finite-volume scheme for the compressible Euler equations is obtained by applying these
fourth-order operators in Eqs. (21)-(24).

The question now remains whether, for this fourth-order scheme, the conservation of both momentum and kinetic energy
(as well as both sound-velocity and internal energy) can be proven. In other words, using the fourth-order gradient operator
in the skew-symmetric and divergence forms (Eqs. (17) and (20)), can it still be proven that these two forms are equivalent
and that Eq. (18) holds. The proofs given for the second-order scheme depend solely on the rules of Eq. (15). Thus, if these
rules hold for the fourth-order scheme, then the conservation of both momentum and kinetic energy follows. Because the
fourth-order discrete gradient operator is a linear combination of the two second-order operators and because the rules
of Eq. (15) are linear in terms of the gradient, it follows that they also hold for the fourth-order gradient. For example,
the discrete product rule of differentiation holds for both second-order gradients, i.e.,
rh
i fuv ¼ uirh

i �v þ v irh
i �u; ð37aÞ

r3h
i fuv ¼ uir3h

i �v þ v ir3h
i �u; ð37bÞ
so that indeed
r�i fuv ¼ð34Þ
airh

i fuv þ bir3h
i fuv ¼ð37Þ

uiðairh
i �v þ bir3h

i �vÞ þ v iðairh
i �uþ bir3h

i �uÞ ¼ð34Þ
uir�i �v þ v ir�i �u: ð38Þ
4. Numerical dispersion and dissipation

4.1. Low-dispersion high-order finite-volume scheme

As stated in the introduction, reducing the interference of numerical errors with the SGS model requires a numerical
method with low numerical dispersion and dissipation at large wave numbers. Dissipation is minimized by using a central
stencil and the skew-symmetric form for convection. To minimize dispersion, the ideas of Tam and Webb [27] are followed.
Their dispersion-relation preserving (DRP) scheme uses finite-differencing to discretize the gradient operator. A symmetric,
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seven-point stencil is used. The coefficients of the stencil have three degrees of freedom of which two are used to make the
scheme fourth-order accurate and the remaining one is used to minimize the dispersion.

Thus, in order to minimize the numerical dispersion of the fourth-order finite-volume scheme as presented in the previ-
ous section, an additional degree of freedom is needed. The size of the discretization stencil should be increased while pre-
serving the skew symmetry of the method. As seen in the previous section, the skew symmetry is preserved if a high-order
scheme is defined as a linear combination of second-order discretizations using Richardson extrapolation. Therefore, an
additional degree of freedom is created by introducing, at each cell centre, a third control volume. For this purpose, the con-
trol volume X2h

i with a mesh size of 2h in the computational domain (see Fig. 3) is used. Note that this control volume was
initially not used in the basic fourth-order scheme, because it has its vertices located not at grid points, but at the centres of
the grid cells. The smallest additional control volume with its vertices at grid points, however, has a mesh size of 5h in the
computational domain. Using this control volume (instead of X2h

i ) would increase the width of the stencil from seven to ele-
ven points in each direction. Using X2h

i keeps the width of the stencil equal to seven.
The discretization of the gradient operator on the control volume X2h

i can be written as
V2h
i r2h

i F ¼ B2h
i ; ð39Þ
with V2h
i the volume of the control volume X2h

i and with the flux balance B2h
i given by
B2h
i ¼ F2h

iþ1;j;k � F2h
i�1;j;k þ F2h

i;jþ1;k � F2h
i;j�1;k þ F2h

i;j;kþ1 � F2h
i;j;k�1: ð40Þ
Again, the flux F2h ¼ F 2hA2h at the face f between control volumes X2h
i;j;k and X2h

iþ2;j;k is computed in the exact same manner as
the fluxes of the original control volume, averaging the variables located at the centres of the two control volumes. Combin-
ing all three discretization stencils through Richardson extrapolation to cancel the leading-order error in the computational
domain, the following fourth-order finite-volume discretization of the gradient operator is found:
Vb
ir

b
iF ¼ Bb

i ; ð41Þ
with
Vb
i ¼ b

4
3

Vh
i �

1

3 � 2d
V2h

i

� �
þ ð1� bÞ 9

8
Vh

i �
1

8 � 3d
V3h

i

� �
; ð42aÞ

Bb
i ¼ b

4
3

Bh
i �

1

3 � 2d
B2h

i

� �
þ ð1� bÞ 9

8
Bh

i �
1

8 � 3d
B3h

i

� �
; ð42bÞ
where the basic fourth-order discretization is recovered for b = 0. The parameter b can now be tuned to minimize the dis-
persion of the scheme. Considering a set of linear equations, a suitable value of b is obtained by requiring that the scheme
reduces to the DRP scheme of Tam and Webb on a uniform Cartesian grid. For linear equations, averaging flow states to com-
pute fluxes at cell faces is equivalent to averaging the fluxes themselves. On a uniform Cartesian grid, the flux balance then
reduces to the following stencil for each computational direction separately:
Bb
i ¼ a1ðFiþ1 � Fi�1Þ þ a2ðFiþ2 � Fi�2Þ þ a3ðFiþ3 � Fi�3Þ; ð43Þ
iΩ 2h

Fig. 3. Control volume X2h
i around the same cell centre as in Fig. 2 with corresponding discretization stencil (2D).
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with the coefficients given by
a1 ¼
27þ 5b

48
; a2 ¼ �

b
12

; a3 ¼
b� 1

48
: ð44Þ
In the DRP scheme, the same stencil is used for the flux balance, with the coefficients (as optimized by Tam [41]) given by
a1 ¼ 0:770882380518; a2 ¼ �0:166705904415; a3 ¼ 0:0208431427703: ð45Þ
Both sets of coefficients define a fourth-order scheme and the two sets are identical for
b ¼ �12a2 ¼ 2:00047085298: ð46Þ
Thus, this value of b is used in Eq. (42b) for the flux balance. The results presented in Section 5.1 will show that this value of b
is also suitable for the non-linear Euler equations using the skew-symmetric discretization (rather than flux averaging). In
practice, the high-order cell volume has been computed as in the basic high-order finite-volume scheme (Eq. (33a)) instead
of using Eq. (42a). This practice maintains the fourth-order accuracy as well as the dispersion level of the scheme. In order to
obtain low numerical dispersion, consistent with the DRP scheme, it has been found that it is essential to treat the flux bal-
ance in the low-dispersion form (Eq. (42b)), but that this is not necessary for the high-order cell volume. This is even the case
for non-uniform, curvilinear grids as the results of Section 5.1 will show.

As the vertices of the control volume X2h do not lie at grid points but at cell centres (see Fig. 3), the coordinates of the cell
centres are required to compute the area vectors of this control volume. To maintain the fourth-order accuracy of the
scheme, these coordinates must be computed with fourth-order accuracy as well.

4.2. Numerical dispersion and implicit filtering

How relevant is it for LES to use a numerical scheme with low dispersion? As the subgrid-scale stresses are responsible for
dissipating the structures with wave lengths close to the filter width, one would say that in the first place a numerical
scheme should have low numerical dissipation. An alternative way of looking at the SGS stresses and the numerical errors
is in terms of filtering. The SGS stresses are the result of applying a filter to the flow equations. The discretization of a spatial
derivative can be written as the continuous derivative of a filtered variable [42,43]; in other words, discretization introduces
an implicit filter and discretization errors can be seen as the effect of this implicit numerical filter. Minimizing the discret-
ization errors relative to the SGS stresses therefore implies minimizing this implicit numerical filter relative to the explicit
filter. This section will show that minimizing the implicit filter is equivalent to minimizing the numerical dispersion.

Following a recent analysis by Geurts [42], the second-order central discretization of the first derivative can be written as
dð2Þh u ¼ uðxþ hÞ � uðx� hÞ
2h

¼ @

@x

Z xþh

x�h

uðsÞ
2h

ds ¼ @

@x

Z 1

�1
G2hðsÞuðx� sÞds; ð47Þ
with GD the kernel function of the top-hat filter with filter width D. A central discretization based on Richardson extrapo-
lation, such as the DRP scheme, consists of a combination of second-order central stencils,
dhu ¼ 2a1d
ð2Þ
h uþ 4a2d

ð2Þ
2h uþ 6a3d

ð2Þ
3h u; ð48Þ
so that it can also be written in terms of the top-hat filter as
dhu ¼ @

@x

Z 1

�1
GðsÞuðx� sÞds; ð49Þ
with the kernel function
G ¼ 2a1G2h þ 4a2G4h þ 6a3G6h: ð50Þ
Taking the Fourier transform F k of Eq. (49), with ûk ¼ F kðuÞ and k the wave number (or substituting a mode u = ûkeik x), turns
the convolution into a product, so that
F kðdhuÞ ¼ ikĜkûk ¼ ĜkF k
@u
@x

� �
; ð51Þ
with the transfer function of the implicit filter Ĝk given by
Ĝk ¼ 2a1Ĝ2h
k þ 4a2Ĝ4h

k þ 6a3
bG6h

k : ð52Þ
where bGD
k ¼ 2=ðkDÞ sinðkD=2Þ is the transfer function of the top-hat filter.

In the DRP scheme, the coefficients ai have been optimized such that the Fourier symbol of the discrete derivative resem-
bles as closely as possible the Fourier symbol of the continuous derivative over a wide range of wave numbers kh in the com-
putational space. In this way, the dispersion-relation is preserved or, in other words, the numerical dispersion is minimized.
Eq. (51) shows that the transfer function bGk is the ratio of the Fourier symbols of the discrete and continuous derivatives. It
follows that, for the DRP scheme, this transfer function will be close to one over a wide range of wave numbers, which means
that the implicit filter has been minimized. Thus, minimizing dispersion is equivalent to minimizing the implicit filter.
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The implicit filter of the DRP scheme is compared to the standard second, fourth, and sixth-order schemes in Fig. 4(a).
Clearly, the DRP scheme has the weakest implicit filter, with the transfer function staying close to one up to kh � 1, i.e., with
only about six grid cells per wave length. Fig. 4(b) compares the implicit filters of the DRP scheme and the standard second-
order scheme to a reference top-hat filter with filter width D, varying the mesh size h relative to this filter width. For h P
D/2, the implicit filter of the second-order scheme is at least as strong as the reference filter. In contrast, for the DRP scheme,
the implicit filter is already weaker than the reference filter with h = D for wave numbers up to kh � 2, i.e., with only about
three grid cells (or filter widths) per wave length. Reducing the mesh size, the transfer function of the DRP scheme rapidly
approaches the identity.

Comparing the implicit filters of the numerical schemes to a reference top-hat filter only serves as an illustration. For
most hybrid RANS–LES models, the SGS model does not involve a filter explicitly. The SGS model is only assumed to model
the SGS stresses obtained by applying some filter to the flow equations. It can be shown, however, that eddy-viscosity mod-
els, which are used almost exclusively in hybrid RANS–LES models, are only consistent with second-order filters [44]. Thus,
comparing to a top-hat filter is more relevant than comparing to, for example, a cut-off filter.

4.3. Artificial diffusion

The high-order scheme defined so far has no numerical dissipation, due to the central, symmetric stencil and the skew-
symmetric discretization. Nonetheless, this scheme is found to be stable for elementary test cases, typically using periodic
boundary conditions, such as the convection of an isentropic vortex in a uniform flow, even on non-uniform grids (see Sec-
tion 5.1). This can be attributed to the skew-symmetric discretization leading to the conservation by convection of kinetic
(and internal) energy. For compressible flow, however, stability of the numerical scheme cannot be strictly proven (contrary
to incompressible flow), as discussed at the end of Section 2.2. Therefore, sixth-order artificial diffusion is added, as an op-
tion, to the discretized equations in conservative form. When the second-order backward scheme is used for the time-inte-
gration, some numerical dissipation is also needed to obtain convergence for the multi-grid scheme used to solve the implicit
system of equations per time step, in particular in inviscid regions of the flow. The impact of the artificial diffusion is as-
sessed in Section 5. The artificial-diffusive flux balance is given by
〈

(a)
wi
Ba
i ¼ Fa

iþ1=2;j;k � Fa
i�1=2;j;k þ Fa

i;jþ1=2;k � Fa
i;j�1=2;k þ Fa

i;j;kþ1=2 � Fa
i;j;k�1=2: ð53Þ
In each of the discretized flow equations in divergence form (Eqs. (21), (22a), and (24)), this flux balance is subtracted from
the flux balance Bb

i (Eq. (42b)) used for the convective terms in the flow equations. The fluxes consist of fifth-order differ-
ences of the flow variables:
Fa
iþ1=2;j;k ¼

kð6Þ

256
kiþ1=2;j;k Uiþ3;j;k � 5Uiþ2;j;k þ 10Uiþ1;j;k � 10Ui;j;k þ 5Ui�1;j;k � Ui�2;j;k

� �
; ð54Þ
with U the relevant flow variable (q,qu, or qE), and are scaled by the spectral radius of the flux Jacobian k,
k h
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Fig. 4. Transfer functions of the implicit filters of the DRP scheme and standard central differencing schemes.
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k ¼ ju � Ahj þ ckAhk2: ð55Þ
with k:k2 the Euclidean norm. This form of artificial diffusion introduces a discretization error of fifth order, leaving the
fourth-order accuracy of the scheme intact. The parameter k(6) is typically taken equal to k(6) = 2 when using second-order
backward time-integration. Note that the seven-point stencil of the total scheme is maintained.

5. Results

5.1. Convection of an isentropic vortex

In order to test the capability of the high-order finite-volume scheme to accurately capture vortices without significant
dissipation or dispersion, the convection of a 2D isentropic vortex in a uniform flow is considered. The uniform flow is in the
positive x direction at a Mach number M1 = 0.5. The initial solution is given by
u ¼
u1
0

� �
þ uAeð1�ðr=bÞ2Þ=2 ðy� y0Þ=b

�ðx� x0Þ=b

� �
; ð56Þ
and
T
T1
¼ p

p1

� �ðc�1Þ=c

¼ q
q1

� �c�1

¼ 1� c� 1
2

u2
A

c2
1

e1�ðr=bÞ2 ; ð57Þ
with T the temperature, with r2 = (x � x0)2 + (y � y0)2 the distance from the vortex centre (x0,y0), and with b the radius where
the velocity induced by the vortex reaches its maximum value uA. The exact solution of the compressible Euler equations
simply consists of a translation of the vortex by a distance equal to the mean-flow velocity times the time interval. The flow
domain is defined as x 2 [ � 25L,25L]2 with periodic boundary conditions, where L ¼

ffiffiffiffiffiffiffiffi
ln 2
p

b is a representative length scale
of the vortex (with e�ðr=bÞ2 ¼ 1

2 at r = L).
A strong vortex is considered with uA/u1 = 0.8. It is initially located at (x0,y0) = (�18.75L,0) and convected for a time per-

iod u1t/L = 37.5 to end up at the location (x,y) = (18.75L,0). Computations are performed on a strongly non-uniform grid,
with strong stretching and skewness, as illustrated in Fig. 5. The grid has been obtained by smoothly mapping a uniform grid
from the computational domain to the physical domain. The number of cells is varied from 100 � 100 to 400 � 400. The
equations are integrated in time by a low-storage 4-stage Runge–Kutta scheme. As this time-integration method is only sec-
ond-order accurate for non-linear equations, the time step is taken proportional to the square of the mesh size in the com-
putational domain, so that the time-integration error is of fourth-order in the mesh size. On the coarsest grid, a time step
u1Dt=L ¼ 1

18 is used.
The second-order scheme, the basic fourth-order scheme, and the low-dispersion fourth-order scheme are used. For all

three schemes, computations using the particular divergence form of the convective operator (Eq. (20)) that is equivalent
to the skew-symmetric form (Eq. (17)) are compared to computations based on a standard divergence form that is not equiv-
alent to the skew-symmetric form. Thus, in total six different schemes are considered. For this case, the skew-symmetric
form is stable without artificial diffusion even on this non-uniform grid. For the non-symmetric divergence form, standard
flux averaging (using F ¼ qu/ in Eq. (16)) turned out to be unstable. Therefore, in the non-symmetric divergence form, the
fluxes at the cell faces are computed by averaging the flow variables per unit volume as in the Jameson-type scheme
(F ¼ quq/=�q), which differs only slightly from the skew-symmetric form (see the end of Section 3.1).

Fig. 6 shows the temperature distributions on the medium grid (200 � 200 cells) computed with all six schemes. For the
non-symmetric second-order scheme, the vortex has clearly lost its shape, while also the centre of the vortex has drifted to a
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Fig. 5. Strongly non-uniform grid (200 � 200 cells) used for convection of strong isentropic vortex (detail around location (18.75L,0)).
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positive y position (of approximately y = L). Using the skew-symmetric form, the shape of the vortex is better preserved than
using the non-symmetric divergence form (in particular visible for the second-order and basic fourth-order schemes). The
low-dispersion fourth-order scheme is the most successful in maintaining the shape and position of the vortex. Note that
the vortex consists of a collection of waves with different wave lengths. Loss of shape and position can be interpreted as
the result of these waves travelling at different speeds, i.e., the result of numerical dispersion. Thus, these results show that
the low-dispersion finite-volume method defined here truly has low dispersion for non-linear flow equations on a strongly
non-uniform grid.
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(a) Second-order scheme, non-symmetric divergence form
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(b) Second-order scheme, skew-symmetric form
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(c) Basic fourth-order scheme, non-symmetric divergence form
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(d) Basic fourth-order scheme, skew-symmetric form
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(e) Low-dispersion fourth-order scheme, non-symmetric divergence
form
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(f) Low-dispersion fourth-order scheme, skew-symmetric form

Fig. 6. Convection of strong isentropic vortex on strongly non-uniform grid: temperature field at time u1t/L = 37.5 (centre should be located at
(x,y) = (18.75L,0)) on medium grid (200 � 200 cells).
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Fig. 7 gives the difference of the numerical solution with the analytical solution as a function of the grid resolution for all
six schemes (with h the mesh size in the computational domain). This shows that the fourth-order schemes are indeed
fourth-order accurate on this strongly non-uniform, curvilinear grid. For the low-dispersion scheme, the error is reduced
by an order of magnitude compared to the basic fourth-order scheme.

As the chosen approach for the non-symmetric divergence form differs only slightly from the skew-symmetric form, one
would not expect large differences in the error levels. Indeed, the error levels for the velocity components are indiscernible.
For the entropy, however, a clear reduction of the error by almost an order of magnitude is seen for the skew-symmetric
form (Fig. 7(d)). Essentially, there is less entropy production using the skew-symmetric form, because it ensures that there
is no dissipation (or creation) of kinetic energy stemming from the discretized convective operator. Larger differences may
be expected if the non-symmetric divergence form would be based on averaging the fluxes, since it requires artificial diffu-
sion to maintain stability.

Although the present computations are stable without artificial diffusion, the effect of including sixth-order artificial dif-
fusion is also assessed. Only the fourth-order low-dispersion skew-symmetric scheme is considered. As this scheme has the
highest accuracy, the effect of artificial diffusion will be the most pronounced. Fig. 8 compares the errors as a function of the
mesh size for the computations with and without artificial diffusion. Two levels of artificial diffusion are considered:
k(6) = 0.5 and k(6) = 2. As expected, the fourth-order accuracy is maintained. Comparing Fig. 8(a) to 7(a) (error in velocity)
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Fig. 7. Convection of strong isentropic vortex on strongly non-uniform grid: grid dependence of root-mean-square value of difference with analytical
solution at time u1t/L = 37.5.
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shows that the low-dispersion scheme with artificial diffusion is still substantially more accurate than the basic fourth-order
scheme without artificial diffusion. In particular, using a coefficient of k(6) = 0.5 does not substantially increase the error
level. Comparing Fig. 8(b) to 7(d), however, shows that the error level in entropy is substantially increased by the artificial
diffusion. Essentially, the gain in accuracy due to the skew-symmetric form is lost. This was to be expected, as the numerical
diffusion reintroduces numerical dissipation of kinetic energy that had been removed by the skew-symmetric form.

For the present inviscid computations, the computational costs of the different schemes have been determined in terms of
the CPU time on the finest grid level, using a single processor of the NEC SX-8. Using the skew-symmetric form instead of a
standard divergence form increases the costs by a factor 1.3, using the basic fourth-order instead of second-order scheme by
a factor 1.8, and using the low-dispersion instead of the basic fourth-order scheme by a factor 1.2. Thus, in total, the low-
dispersion fourth-order skew-symmetric scheme is a factor 2.8 more expensive than the basic second-order scheme using
a standard divergence form. For the fourth-order and low-dispersion schemes, the increased numerical accuracy clearly out-
weighs the increased computational costs. To obtain the same accuracy as the second-order scheme on the finest grid level,
the fourth-order scheme allows the mesh size to be at least twice as large and the low-dispersion fourth-order scheme three
to four times as large. In 3D, this means that the low-dispersion fourth-order skew-symmetric scheme is a factor 10–20
cheaper than the basic second-order scheme (keeping the same size for the time step). Whether one considers the (small)
increase of computational cost for the skew-symmetric form worthwhile, depends on the relevance of the reduced entropy
error and the improved numerical stability.

5.2. Decaying isotropic homogeneous turbulence

The high-order finite-volume scheme is intended to be used for the LES regions of hybrid RANS–LES computations. To
assess the numerical scheme in pure LES mode, the decay of isotropic homogeneous turbulence is considered. The results
are compared to the experiment of Comte-Bellot and Corrsin [45]. In this experiment, the turbulence was generated by a
grid with mesh size Mg = 5.08 cm and with an onset velocity of U0 = 10 m/s. The Reynolds number based on these scales
is Re0 = U0Mg/m = 34,000. In the computations, a cubic box of thickness L = 10Mg is used with periodic boundary conditions.
The initial solution consists of a random velocity field generated from the filtered experimental energy spectrum at time
t+ = t U0/Mg = 42.

X-LES computations with the second-order scheme have been presented before [8]. The same computational procedure is
followed here. To study the grid dependence of the numerical scheme, a fixed filter width D = L/32 is employed, while the
mesh size is varied from h = D to h = D/4. Because LES computes a filtered velocity field, the experimental data is filtered with
the top-hat filter to allow a proper comparison (see [8] for details).

In Large-Eddy Simulations, numerical errors stemming mainly from the convection terms may interfere with the subgrid-
scale model, especially for second-order methods. The high-order scheme has been developed to reduce those numerical
errors in particular. Thus, for X-LES computations with the high-order scheme, only the inviscid terms of the basic flow
equations are discretized with high order. The viscous terms and the Reynolds and SGS stresses are discretized with a
standard second-order central scheme. Also, the k and x equations are discretized with a second-order scheme [46].
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Fig. 8. Convection of strong isentropic vortex on strongly non-uniform grid: grid dependence of root-mean-square value of difference with analytical
solution at time u1t/L = 37.5 of fourth-order low-dispersion skew-symmetric scheme with and without artificial diffusion.
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For compressible flow, the skew-symmetric form ensures that the kinetic energy is conserved by the convective operator.
This is illustrated by first performing inviscid computations of homogeneous turbulence at compressible flow conditions
(Mach number M1 = 0.2 based on the initial turbulence intensity u1 = 0.222 m/s). Without viscous dissipation, the total ki-
netic energy in the box can only change due to the work done by the pressure. Fig. 9 gives the time dependence of the total
kinetic energy for computations on the coarse grid (h = D) with the low-dispersion fourth-order scheme without artificial
diffusion. Both the skew-symmetric form and the non-symmetric divergence form (using flux averaging) are considered.
The low-storage 4-stage Runge–Kutta scheme has been used with a small time step (Dt+ = 0.873 or u1Dt/h = 0.062). The com-
putation with the non-symmetric divergence form shows a rapid increase of the total kinetic energy and breaks down within
a short time period. Clearly, due to the lack of energy conservation, this method is unstable. For the computation with the
skew-symmetric form, the stability is strongly enhanced and the total kinetic energy is practically constant on the time scale
shown, because there is no numerical production or dissipation of kinetic energy originating from the discretized convective
terms in the momentum equation. Therefore, for X-LES computations, the decay of the total kinetic energy will be deter-
mined by the SGS model and not by numerical dissipation.

Next, the grid convergence is considered for X-LES computations in pure LES mode, i.e., using a k-equation SGS model, at
incompressible flow conditions. The equations are integrated in time by a second-order implicit scheme with time step
Dt+ = 3.49. Fig. 10 shows the grid dependence of the energy spectra at times t+ = 98 and t+ = 171 for the second-order scheme
with fourth-order artificial diffusion and the skew-symmetric low-dispersion fourth-order scheme with sixth-order artificial
diffusion. The level of artificial diffusion is such that the damping at the highest wave numbers (point-to-point oscillations)
is the same for both schemes (k(6) = 2 for the sixth-order artificial diffusion). This ensures that the multi-grid scheme used to
solve the implicit system of equations per time step shows the same convergence rate for both schemes. The fourth-order
scheme has clearly improved the grid convergence over the second-order scheme. For sufficient accuracy, the second-order
scheme requires at least a mesh size of h = D/4, i.e., four cells per filter width, while the fourth-order scheme obtains the
same level of accuracy with a mesh size of h = D/2, i.e., two cells per filter width.
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Fig. 9. Compressible isotropic homogeneous turbulence: time dependence of total kinetic energy for inviscid computations with low-dispersion fourth-
order schemes without artificial diffusion using skew-symmetric and standard divergence forms.
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Fig. 10. Incompressible isotropic homogeneous turbulence: grid dependence of energy spectra for second-order and low-dispersion fourth-order schemes.
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Fig. 11. Incompressible isotropic homogeneous turbulence: decay of total kinetic energy for low-dispersion fourth-order scheme with and without sixth-
order artificial diffusion.
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Fig. 12. Incompressible isotropic homogeneous turbulence: grid dependence of energy spectra for low-dispersion fourth-order scheme with and without
sixth-order artificial diffusion.

J.C. Kok / Journal of Computational Physics 228 (2009) 6811–6832 6829
For the present computations, artificial diffusion is not needed to maintain stability. As explained in Section 4.3, however,
there may be practical reasons to include some artificial diffusion. Therefore, the effect of artificial diffusion on the numerical
accuracy is considered. Fig. 11 shows the decay of the total kinetic energy for the fourth-order low-dispersion skew-symmet-
ric scheme with and without sixth-order artificial diffusion. Fig. 12 shows the grid dependence of the energy spectra with
and without artificial diffusion. The decay of kinetic energy is virtually grid-independent at a mesh size h = D/2. The grid-
converged solution is purely determined by the SGS model, not by numerical errors. The computations with and without
artificial diffusion converge towards this solution from opposite sides, but with similar convergence rates. Thus, at least
for this case, the numerical errors introduced by a limited amount of sixth-order artificial diffusion are of the same order
as the other numerical errors. Artificial diffusion is not needed, however, to obtain a grid-converged solution purely deter-
mined by the SGS model.

For these LES computations, the increase in computational cost for the high-order scheme is only a factor 1.4. The viscous
and SGS terms as well as the k and x equations make the computations more expensive than inviscid computations, thus
reducing the relative cost of the high-order scheme. The additional cost of the skew-symmetric form is now effectively
negligible.

6. Conclusion

A high-order finite-volume method with low numerical dissipation and dispersion has been developed for the compress-
ible flow equations such that the mathematical skew symmetry of convection is preserved. It has been shown that both
momentum and kinetic energy, as well as sound-velocity and internal energy, are locally conserved by convection, in a dis-
crete sense, even on non-uniform, curvilinear grids. Furthermore, the method is strictly fourth-order accurate on such grids,
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while maintaining the conservation properties. The skew symmetry prevents spurious production or dissipation of kinetic
energy, which could interfere with a subgrid-scale model. The skew symmetry has been preserved by combining second-
order methods using Richardson extrapolation and by using constant coefficients for the discretization stencil, even on
non-uniform grids. By using three instead of two control volumes in the Richardson extrapolation, an additional degree of
freedom is introduced that allows the minimization of numerical dispersion.

A grid convergence study for the convection of an isentropic vortex has confirmed that the method is fourth-order accu-
rate on smooth, strongly non-uniform, curvilinear grids. For this study, the low-dispersion approach reduces the errors in all
variables by an order of magnitude and the skew-symmetry preservation reduces the entropy error by an additional order of
magnitude, compared to a basic fourth-order method.

Finally, the decay of homogeneous isotropic turbulence has been computed. In the compressible, inviscid case, using the
discrete skew-symmetric form enhances the numerical stability in the sense that the total kinetic energy has only a very
weak growth rate compared to a computation using a standard discrete divergence form of convection. For Large-Eddy Sim-
ulations, a grid convergence study has shown that the fourth-order solution with a mesh size equal to half the filter width is
comparable to the second-order solution with a mesh size equal to a quarter of the filter width. In other words, the mesh size
can be twice as large for the new fourth-order method to obtain the same numerical accuracy, reducing the computational
effort by a factor eight in 3D.
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Appendix A. Detailed derivations

The rules of Eq. (15) are derived in detail here. Without loss of generality, let face f be the face between cells Xi,j,k and
Xi+1,j,k. Rule (15a) is derived as follows:
gðuvÞv f ¼
1
2
ðuvÞi;j;kv iþ1;j;k þ ðuvÞiþ1;j;kv i;j;k

� �
¼ 1

2
ui;j;k þ uiþ1;j;k
� �

v i;j;kv iþ1;j;k ¼ �uf fvv f : ðA:1Þ
Rule (15b) is derived as follows:
�uf �v f ¼
1
2

ui;j;k þ uiþ1;j;k
� �1

2
v i;j;k þ v iþ1;j;k
� �

¼ 1
4

ui;j;kv i;j;k þ uiþ1;j;kv iþ1;j;k
� �

þ 1
4

ui;j;kv iþ1;j;k þ uiþ1;j;kv i;j;k
� �

¼ 1
2

uv f þ
1
2
fuv f ; ðA:2Þ
so that summing over all faces f of cell Xi gives
ri�u�v ¼ 1
2
riuv þ 1

2
rifuv ; ðA:3Þ
Finally, rule (15c) is derived as follows:
fuv f ¼
1
2

ui;j;kv iþ1;j;k þ uiþ1;j;kv i;j;k

� �
¼ ui;j;k

1
2

v i;j;k þ v iþ1;j;k
� �

þ v i;j;k
1
2

ui;j;k þ uiþ1;j;k
� �

� ui;j;kv i;j;k

¼ ui;j;k �v f þ v i;j;k�uf � ui;j;kv i;j;k; ðA:4Þ
so that summing over all faces f of cell Xi gives
rifuv ¼ uiri �v þ v iri�u� uiv i
1
V i

X
f

Af ¼ uiri �v þ v iri�u; ðA:5Þ
where the geometric conservation law (Eq. (13)) has been used.

Appendix B. Time-integration method preserving skew symmetry

In this appendix, a time-integration method is sought that preserves the skew symmetry of the compressible convection
operator. For incompressible flow, two approaches have been considered by Verstappen and Veldman [17]: the midpoint
rule and the leapfrog method. Both schemes are also considered here for compressible flows. For incompressible flows, pres-
ervation of skew symmetry results, for both schemes, in a conservative discretization of the kinetic energy equation. Only for
the midpoint rule, however, does this imply that a discrete energy norm cannot increase.
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To preserve skew symmetry for a time-integration method, Eq. (18) should also hold with a discretized time derivative.
One approach consists of discretizing the time derivative in the same manner as the spatial gradient,
dn
t / ¼

/nþ1=2 � /n�1=2

Dt
; ðB:1Þ
with superscript n indicating the time level and with Dt the time-step size. Averaging towards time level n + 1/2 is defined
analogous to Eq. (14) and equivalents of relations (15) also hold for the discrete time derivative. Discretizing the skew-sym-
metric form both in space and time as
Kn
i / ¼

1
2

dn
t qi/i þ

1
2
qn

i dn
t /i þ

1
2
ri � qnun/n þ 1

2
qn

i un
i � ri

�/n; ðB:2Þ
one finds the following conservative discretization for the divergence form applied to /2,
/n
i Kn

i / ¼ dn
t qi

1
2
g/i/i

� �
þri � qnun 1

2
g/n/n

� �
; ðB:3Þ
with g/i/i ¼ /n
i /

nþ1
i . The time derivative, however, contains a term which is not strictly quadratic. Integrating this equation

over the flow domain leads to conservation of /n/n+1 rather than /2, and the integral of this product is not strictly an energy
norm. Furthermore, this time discretization is essentially the leapfrog method, which requires further modifications to be
stable when including diffusion [47].

An alternative approach for the time-integration is the midpoint rule, which does lead to a conservative discretization
involving a true energy norm for incompressible flow [17]. Discretize the time derivative at time level n + 1/2 as
dnþ1=2
t / ¼ /nþ1 � /n

Dt
: ðB:4Þ
The following discrete product rule can be derived,
dnþ1=2
t ðuvÞ ¼ unþ1=2dnþ1=2

t v þ vnþ1=2dnþ1=2
t u; ðB:5Þ
with unþ1=2 ¼ 1
2 ðunþ1 þ unÞ. If the skew-symmetric form is now discretized both in space and time as
Knþ1=2
i / ¼ 1

2
dnþ1=2

t ðqi/iÞ þ
1
2
qnþ1=2

i dnþ1=2
t /i þ

1
2
ri � ðquÞnþ1=2/nþ1=2 þ 1

2
ðquÞnþ1=2

i � ri/
nþ1=2; ðB:6Þ
then the following discretization for the divergence form applied to /2 is found,
/nþ1=2
i Knþ1=2

i / ¼ dnþ1=2
t qi

1
2

/2
i

� �
þri � ðquÞnþ1=2 1

2
g/nþ1=2/nþ1=2

� �
þ 1

2
qnþ1=2

i /nþ1=2
i � ðq/Þnþ1=2

i

� �
dnþ1=2

t /i: ðB:7Þ
Although now the equation includes the time derivative of a truly quadratic form, there is an additional non-conservative
term that only disappears if the density is constant. Thus, this approach also does not lead to a suitable symmetry-preserving
time-integration method for compressible flow.

References

[1] P.R. Spalart, W.-H. Jou, M. Strelets, S.R. Allmaras, Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach, in: C. Liu, Z. Liu
(Eds.), Advances in DNS/LES, Proc. 1st AFOSR Int. Conf. on DNS/LES, 1997, Ruston (LA), USA Greyden Press, 1997.

[2] S. Ghosal, Mathematical and physical constraints on large-eddy simulation of turbulence, AIAA J. 37 (4) (1999) 425–433.
[3] A.G. Kravchenko, P. Moin, On the effect of numerical errors in large eddy simulations of turbulent flows, J. Comput. Phys. 131 (1997) 310–322.
[4] B. Vreman, B. Geurts, H. Kuerten, Comparison of numerical schemes in large eddy simulation of the temporal mixing layer, Int. J. Numer. Meth. Fluids 2

(1996) 297–311.
[5] J. Meyers, B.J. Geurts, M. Baelmans, Database analysis of errors in large eddy simulation, Phys. Fluids 15 (2003) 2740–2755.
[6] C. Fureby, F.F. Grinstein, Monotonically integrated large eddy simulation of free shear flows, AIAA J. 37 (5) (1999) 544–556.
[7] J.C. Kok, A symmetry and dispersion-relation preserving high-order scheme for aeroacoustics and aerodynamics, in: ECCOMAS CFD 2006, Egmond aan

Zee, The Netherlands, 2006, NLR-TP-2006-525.
[8] J.C. Kok, H.S. Dol, B. Oskam, H. van der Ven, Extra-large eddy simulation of massively separated flows, in: 42nd AIAA Aerospace Sciences Meeting, Reno

(NV), USA, 2004, AIAA Paper 2004-264.
[9] J.C. Kok, B.I. Soemarwoto, H. van der Ven, Extra-large eddy simulations using a high-order finite-volume scheme, in: S.H. Peng, W. Haase (Eds.),

Advances in Hybrid RANS–LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 97, Springer, 2008, pp. 87–96. NLR-
TP-2007-800.

[10] N.N. Mansour, P. Moin, W.C. Reynolds, J.H. Ferziger, Improved methods for large eddy simulations of turbulence, Turbulent Shear Flows 1 (1979) 386–
401.

[11] G.A. Blaisdell, E.T. Spyropoulos, J.H. Qin, The effect of the formulation of nonlinear terms on aliasing errors in spectral methods, Appl. Numer. Math. 21
(3) (1996) 207–219.

[12] F.H. Harlow, J.E. Welch, Numerical calculations of time-dependent viscous incompressible flow with free surface, Phys. Fluids 8 (1965) 2182–2189.
[13] Y. Morinishi, T.S. Lund, O.V. Vasilyev, P. Moin, Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys. 143

(1998) 90–124.
[14] O.V. Vasilyev, High order finite difference schemes on non-uniform meshes with good conservation properties, J. Comput. Phys. 157 (2000) 746–761.
[15] R.W.C.P. Verstappen, A.E.P. Veldman, Direct numerical simulation of turbulence at lower costs, J. Eng. Math. 32 (1997) 143–159.
[16] R.W.C.P. Verstappen, A.E.P. Veldman, Spectro-consistent discretization of Navier–Stokes: a challenge to RANS and LES, J. Eng. Math. 34 (1998) 163–179.
[17] R.W.C.P. Verstappen, A.E.P. Veldman, Symmetry-preserving discretization of turbulent flow, J. Comput. Phys. 187 (1) (2003) 343–368.



6832 J.C. Kok / Journal of Computational Physics 228 (2009) 6811–6832
[18] A.E.P. Veldman, K. Rinzema, Playing with nonuniform grids, J. Eng. Math. 26 (1992) 119–130.
[19] R.W.C.P. Verstappen, A.E.P. Veldman, Numerical simulation of a turbulent flow in a channel with surface mounted cubes, Appl. Sci. Res. 59 (1998) 395–

408.
[20] W.J. Feiereisen, W.C. Reynolds, J.H. Ferziger, Numerical simulation of a compressible, homogeneous, turbulent shear flow, Report TF-13,

Thermosciences Division, Mechanical Engineering, Stanford University, 1981.
[21] A.E. Honein, P. Moin, Higher entropy conservation and numerical stability of compressible turbulence simulations, J. Comput. Phys. 201 (2) (2004)

531–545.
[22] F. Ducros, F. Laporte, T. Souléres, V. Guinot, P. Moinat, B. Caruelle, High-order fluxes for conservative skew-symmetric-like schemes in structured

meshes: application to compressible flows, J. Comput. Phys. 161 (2000) 14–139.
[23] C.A. Kennedy, A. Gruber, Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid, J. Comput.

Phys. 227 (2008) 1676–1700.
[24] S. Nagarajan, S.K. Lele, J.H. Ferziger, A robust high-order compact method for large eddy simulation, J. Comput. Phys. 191 (2) (2003) 392–419.
[25] N. Park, J.Y. Yoo, H. Choi, Discretization errors in large eddy simulation: on the suitability of centered and upwind-biased compact difference schemes,

J. Comput. Phys. 198 (2) (2004) 580–616.
[26] G. Rubio, M. Baelmans, W. Desmet, Finite volume convective flux reconstruction using high-order skew-symmetric-like schemes, in: 13th AIAA/CEAS

Aeroacoustics Conference, Rome, Italy, 2007, AIAA Paper 2007-3407.
[27] C.K.W. Tam, J.C. Webb, Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys. 107 (1993) 262–281.
[28] S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1) (1992) 16–42.
[29] M.R. Visbal, D.P. Rizzetta, Large-eddy simulation on curvilinear grids using compact differencing and filtering schemes, J. Fluids Eng. 124 (2002) 836–

847.
[30] T. Colonius, S.K. Lele, Computational aeroacoustics: progress on nonlinear problems of sound generation, Prog. Aerosp. Sci. 40 (6) (2004) 345–416.
[31] M.R. Visbal, D.V. Gaitonde, On the use of high-order finite-difference schemes on curvilinear and deforming meshes, J. Comput. Phys. 181 (2002) 155–

185.
[32] C. Lacor, S. Smirnov, M. Baelmans, A finite volume formulation of compact central schemes on arbitrary structured grids, J. Comput. Phys. 198 (2)

(2004) 535–566.
[33] M. Piller, E. Stalio, Finite-volume compact schemes on staggered grids, J. Comput. Phys. 197 (1) (2004) 299–340.
[34] M. Piller, E. Stalio, Compact finite volume schemes on boundary-fitted grids, J. Comput. Phys. 227 (9) (2008) 4736–4762.
[35] M. Popescu, W. Shyy, M. Garbey, Finite volume treatment of dispersion-relation-preserving and optimized prefactored compact schemes for wave

propagation, J. Comput. Phys. 210 (2) (2005) 705–729.
[36] S. Smirnov, C. Lacor, M. Baelmans, A finite-volume formulation for compact scheme with applications to LES, in: 15th AIAA Computational Fluid

Dynamics Conference, Anaheim, CA, 2001, AIAA 2001-2546.
[37] D.V. Nance, K. Viswanathan, L.N. Sankar, Low-dispersion finite-volume scheme for aeroacoustic applications, AIAA J. 35 (2) (1997) 255–262.
[38] R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. 2, Interscience Publishers, New York, 1962.
[39] E.T. Spyropoulos, G.A. Blaisdell, Evaluation of the dynamic model for simulations of compressible decaying isotropic turbulence, AIAA J. 34 (5) (1996)

990–998.
[40] A. Jameson, Numerical simulation of the Euler equations for compressible inviscid fluids, Report MAE 1643, Dept. of Mech. and Aerosp. Eng., Princeton

University, 1985.
[41] C.K.W. Tam, Computational aeroacoustics: issues and methods, AIAA J. 33 (1995) 1788–1796.
[42] B.J. Geurts, Interacting errors in large-eddy simulation: a review of recent developments, J. Turbul. 7 (5) (2006) 1–16.
[43] R.S. Rogallo, P. Moin, Numerical simulation of turbulent flows, Ann. Rev. Fluid Mech. 16 (1984) 99–137.
[44] C.D. Pruett, Toward the de-mystification of LES, in: Proceedings of the 3rd AFOSR International Conference on DNS/LES, Arlington (TX), USA, 2001.
[45] G. Comte-Bellot, S. Corrsin, The use of a contraction to improve isotropy of grid generated turbulence, J. Fluid Mech. 25 (1966) 657–682.
[46] J.C. Kok, S.P. Spekreijse, Efficient and accurate implementation of the k-x turbulence model in the NLR multi-block Navier–Stokes system, in:

ECCOMAS 2000, Barcelona, Spain, 2000, NLR-TP-2000-144.
[47] P. Wesseling, Principles of computational fluid dynamics, No. 29 in Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2001.


	A high-order low-dispersion symmetry-preserving finite-volume  method for compressible flow on curvilinear grids
	Introduction
	Local conservation and high-order schemes
	Numerical dissipation and dispersion

	Symmetry and conservation for compressible flow
	The skew-symmetric form of the convective operator
	The compressible flow equations

	High-order finite-volume scheme
	Conservative discretization preserving skew symmetry
	The compressible flow equations
	Basic fourth-order finite-volume scheme

	Numerical dispersion and dissipation
	Low-dispersion high-order finite-volume scheme
	Numerical dispersion and implicit filtering
	Artificial diffusion

	Results
	Convection of an isentropic vortex
	Decaying isotropic homogeneous turbulence

	Conclusion
	Acknowledgment
	Detailed derivations
	Time-integration method preserving skew symmetry
	References


